Feline UTI: Offending Agents

This study investigated prevalence of different bacterial species in cats with urinary tract infections. The most common isolate was *Escherichia coli* (37.3%) followed by *Enterococcus faecalis* (27%). Almost 20% of isolates were coagulase-negative species that could not be identified with standard methods. Further testing identified them as *Staphylococcus felis*. The *S. felis*-positive samples were collected by cystocentesis from cats with clinical signs of urinary tract disease. *S. felis* was significantly associated with higher urine specific gravity and urine that was more likely to contain crystals. The authors believe this to be the first published study that associates *S. felis* with clinical signs of lower urinary tract disease in cats. *S. felis* may be a common urinary pathogen of cats, but further work is required for confirmation. This study suggests that if a gram-negative organism is seen in cats with urinary tract infections, it is probably *E. coli*. If gram-positive cocci are seen, *E. faecalis* or *S. felis* should be considered.

Study funded by Bayer Animal Health, Australia

COMMENTARY: Urinary tract infections in cats are the exception rather than the rule, especially in young cats. This study focused on cats that had confirmed infection with an organism that had not previously been identified as a possible pathogen in the urinary tracts of cats. *S. felis* was isolated from clinical specimens in cats starting in 1989 and is considered a normal commensal organism of the skin. Differentiating *E. faecalis* from *S. felis* is important because *E. faecalis* has a different susceptibility profile and requires higher dosages, longer duration, and in some cases a combination of therapeutic agents. On the other hand, treatment of *S. felis* infection is relatively uncomplicated.—Patricia Thomblison, DVM, MS

Hypertrophic Cardiomyopathy: Which Drug?

In this study, 40 cats without clinical signs of hypertrophic cardiomyopathy (HCM) presented with a heart murmur or gallop and were examined. Twenty-one were confirmed to have subclinical HCM and were enrolled in a double-blind, randomized, prospective study. The cats were either treated with benazepril (0.5 mg/kg PO once daily) or with diltiazem CD (10 mg/kg PO once daily). Cats were evaluated at day 0 and 3 and 6 months after therapy. Monitoring included baseline laboratory analysis, physical examinations, systolic arterial blood pressure, thoracic radiographs, and echocardiography. In the benazepril treated cats, the diastolic transmitral flow of the E and A waves (E–A ratio) increased significantly during the 6 months. In addition, the thickness of the left ventricular free wall in systole decreased significantly between 0 and 3 months. None of the parameters changed in the diltiazem CD group. When the 2 treatment groups were compared, no difference between the 2 groups was found. Thus, the findings in the benazepril group may have been incidental or due to the small number of cats enrolled in the study. Study funded by Novartis Animal Health Canada, Inc and Université de Montréal

COMMENTARY: Unless you are very interested in feline HCM, you can get the practical information from just reading the abstract on this one.—Chris Wong, DVM