Cerebral Infarction

Mark Troxel, DVM, DACVIM (Neurology)

Massachusetts Veterinary Referral Hospital Woburn, Massachusetts

Profile

- Cerebrovascular disease refers to a group of disorders that result from a pathological process that compromises blood supply to the brain.
 - Such disorders may be either ischemic or hemorrhagic.
- Infarction is a local tissue injury or necrosis from reduced or absent blood flow to a specific part of the body, including the brain.
- Cerebral infarction (cerebral infarct, cerebrovascular accident [CVA], or stroke) is usually a focal ischemic event with an acute onset of asymmetric clinical signs that are progressive for a short time.
- Global brain ischemia can also occur (eg, anesthetic accidents, cardiopulmonary
- By definition, clinical signs must be present for at least 24 hours to be considered a stroke.1,2
- Transient ischemic attack (TIA) is the term used to describe a cerebrovascular disorder in which clinical signs resolve within 24 hours following transient ischemia.

Pathophysiology

- There is little energy reserve in the brain, so it is dependent on continuous delivery of oxygen and glucose for energy; it is capable of only aerobic metabolism.1
- The brain receives 20% of cardiac output and accounts for 15% of oxygen consumption, despite comprising only 2% of body weight.1
- Infarcts can be described based on their underlying pathophysiology or location and size.

Underlying Pathophysiology^{2,3}

- *Ischemic infarct* is secondary to lack of oxygen delivery caused by blood vessel obstruction; this is the most common form of cerebral infarct in dogs and cats.
- *Hemorrhagic infarct* is secondary to ruptured blood vessels leading to hemorrhage within the brain parenchyma.

Location & Size1,3

- Territorial infarct is a large area of tissue damage secondary to obstruction of one of the major arteries to the brain (eg, middle cerebral artery, rostral cerebellar artery).
- Lacunar infarct is a smaller area of tissue damage from obstruction of small superficial or deep penetrating arteries.

Cerebrovascular disease refers to a group of disorders that result from a pathological process that compromises blood supply to the brain.

continues

Predisposing Conditions for Cerebral Infarction

- Aberrant parasite migration (eg, Cuterebra spp, Dirofilaria immitis)
- Angiostrongylus vasorum infection
- Atherosclerosis
- Cardiac disease
- Coagulopathy
- Chronic kidney disease
- Extension of CNS infection
- Hyperadrenocorticism
- Hyperlipidemia
- Hypertension
- Hypothyroidism
- Increased blood viscosity (eg, polycythemia, multiple myeloma)
- Intravascular neoplasia (eg, lymphoma, hemangiosarcoma)
- Liver disease
- Protein-losing nephropathy
- Sepsis and bacterial thromboembolism
- Vasculitis

Table 1. Ancillary Diagnostics

Ischemic infarction	Hemorrhagic infarction
Urine protein:creatinine ratio if proteinuria	Rickettsial disease testing
Endocrine testing for hyperadrenocorticism (eg, ACTH stimulation test, dexamethasone suppression testing)	Clotting studies: buccal mucosal bleeding time, prothrombin time (PT), activated partial thromboplastin time (APTT)
Serum antithrombin III activity	von Willebrand factor analysis
p-dimer tests	Testing for <i>Angiostrongylus vasorum</i> in endemic regions
Echocardiography and electrocardiography if underlying cardiac condition	

Signalment

- Infarction can occur at any age but is typically diagnosed in middle-aged to geriatric dogs and cats.4-6
- No apparent gender predisposition.
- They can occur in all breeds of dogs and cats, but the following breeds may be at increased risk⁶⁻¹⁰:
 - Greyhounds: Especially cerebellar infarcts; these are often idiopathic but may be hypertension-related.
 - Cavalier King Charles spaniels: Possibly related to local alterations in intracranial pressure secondary to Chiari-like malformation.
 - Miniature schnauzers: Possibly related to hyperlipidemia.
 - Brachycephalic breeds: Increased risk for global ischemia, especially with ketamine anesthetic protocols.

Risk Factors

■ The three most common risk factors for cerebral infarction are hypertension, hypercoagulability, and hyperviscosity.

Predisposing Conditions^{2,4,6,11}

■ The most common predisposing causes are idiopathic hypertension, chronic kidney disease, and hyperadrenocorticism.

- A predisposing condition is identified in just over half of dogs with MRI evidence of infarction.
- **■** See **Predisposing Conditions for** Cerebral Infarction.

History

- Patients are usually presented for evaluation following peracute to acute onset of neurologic signs that are non-progressive after 24 hours.
 - Rarely, progression may occur at 48-72 hours because of secondary cerebral edema.1,2
- Common clinical signs noted by owners include vestibular dysfunction, seizures, altered mental status, paresis, or ataxia.

Physical Examination

- General examination may be normal or demonstrate changes consistent with a predisposing condition (eg, cranial abdominal organomegaly, thin hair coat).
- Retinal fundic examination is recommended.
 - Hypertension may cause enlarged or tortuous retinal vessels.
 - Papilledema may be present if increased intracranial pressure.
 - Concurrent chorioretinitis or infil-

trative disease (eg, lymphoma) further suggests presence of a concurrent, predisposing condition.

Neurologic Examination

- As with all neurologic disorders, neurologic signs reflect lesion location and extent rather than cause.
- Common signs based on lesion location include:
 - Cerebrum: Seizures, mental obtundation, circling, pacing, inappropriate elimination
 - Thalamus: Signs of cerebral disease as above or vestibular dysfunction (possibly from damaged thalamic relay centers associated with cerebellar and vestibular nuclei; damage to the medial longitudinal fasciculus; input of vestibular information to the thalamus; or diaschisis, a sudden change in function in one area of the brain from damage in a distant location).
 - Brainstem: Altered mental status, cranial nerve deficits, vestibular dysfunction, paresis, ataxia.
 - Cerebellum: Paradoxical central vestibular dysfunction, hypermetria, cerebellar (intention) tremors, truncal sway/ataxia.

Diagnosis

Definitive Diagnosis

- Definitive diagnosis requires histopathology at necropsy.
 - CT- or MRI-guided stereotactic biopsy may not provide a definitive diagnosis of infarction but may help rule out other possible causes (eg, neoplasia, encephalitis).
- A presumptive diagnosis can be made via advanced imaging and exclusion of other potential causes.

Differential Diagnoses

- Intracranial neoplasia
- Immune-mediated, non-infectious encephalitis (eg, granulomatous meningoencephalomyelitis, necrotizing encephalitis)
- Infectious encephalitis
- Traumatic brain injury

Laboratory Findings

- Minimum database includes CBC, serum chemistry panel, thyroid hormone analysis, and urinalysis.
- Serial systolic blood pressure measurements should be obtained to rule out systemic hypertension.
- Thoracic radiographs and abdominal ultrasound are recommended to screen for neoplasia and predisposing conditions.
- Ancillary diagnostics should be

performed based on the type of infarction present (Table 1, previous page).

Imaging

- MRI is the advanced imaging modality of choice given its superior soft tissue resolution.
 - The classic MRI characteristic of an ischemic stroke (Figure 1, next page) is an intra-axial lesion (often wedge-shaped) that is hyperintense (bright) on T2-weighted and fluid attenuation inversion recovery (FLAIR) images, iso- to hypointense (dark) on pre-contrast T1-weighted images, and minimal to no contrast enhancement.
 - Diffusion weighted imaging (DWI; Figure 2, next page) is the sequence of choice for acute ischemic infarction.
 - DWI detects lack of normal Brownian motion of molecules. particularly lack of intercellular water movement from cell swelling associated with cytotoxic edema.
 - An acute infarction appears as a hyperintense region.
 - The MRI appearance of hemorrhagic infarction (Figure 3, next page) varies greatly as blood cells and hemoglobin degrade (**Table 2**).

Table 2. MRI Characteristics of Hemorrhage

Stage	Time frame	Hemoglobin state	T2-weighted	T1-weighted
Peracute	<24 hrs	Oxyhemoglobin	Hyperintense	Isointense
Acute	1-3 days	Deoxyhemoglobin	Hypointense	Isointense
Early subacute	3-7 days	Intracellular methemoglobin	Hypointense	Hyperintense
Late subacute	>7 days	Extracellular methemoglobin	Hyperintense	Hyperintense
Chronic	>14 days	Hemosiderin	Hypointense	Iso- to hypointense

continues

DWI obtained from a dog showing a wedge-shaped, markedly hypertintense signal in the left dorsal cerebellar gray matter consistent with a left cerebellar infarct (arrow). DWI is the MRI sequence of choice for peracute to acute infarction.

MRI images from a dog with a presumed hemorrhagic infarct (arrows) based on improved clinical signs and reduction in size on follow-up MRI imaging without definitive treatment. There is a large, intra-axial lesion in the right parietal & occipital lobes. Images (A) and (G) are parasagittal T2-weighted and T1-weighted images, respectively. Images (B) through (F) are transverse images at the left of the midbrain. Image (H) is a dorsal view. The lesion is heterogeneous and primarily hyperintense on T2-weighted (A, B) and FLAIR (C) images; hypointense on T2*GRE (D) images consistent with hemorrhage; hypointense with a rim of hyperintensity on T1-weighted images (E); and has moderate-to-marked peripheral rim contrast enhancement (F-H).

- Hemorrhagic infarcts can be difficult to distinguish from hemorrhagic brain tumors (eg, glioma, hemangiosarcoma).
- The T2*-gradient echo (T2*GRE) sequence is best for identifying hemorrhage as it is hypointense on this sequence.
- T2*GRE is also hypointense for mineralization, air, iron, melanin, and foreign bodies.

Treatment

Inpatient or Outpatient

- Patients with mild signs may be treated on an outpatient basis.
- Non-ambulatory patients with moderate to severe clinical signs, especially larger-breed dogs, may need to be hospitalized until they are able to walk with minimal to no assistance.

Acute Medical Treatment

- In general, there is no specific treatment for cerebral infarction.
- So-called *clot busters* or thrombolytic agents (eg, tissue plasminogen activator [tPA], streptokinase) are frequently used in human medicine.
 - These medications are infrequently used in veterinary medicine because blood clots are rarely a cause of infarction in dogs and cats, thrombolytic agents need to be given within 6 hours of infarction, and expense or limited availability preclude their use.
- Mannitol (0.5-1.0 g/kg IV over 10-15 minutes) or hypertonic saline 7.5% (3-5 mL/kg IV over 10-15 minutes) may be needed to reduce brain swelling.
 - There is a theoretical risk for exacerbating hemorrhage or cerebral edema if mannitol is given to patients with intracranial hemorrhage, but benefits likely outweigh
- Hypertension should be treated to prevent ongoing damage.
 - Initial treatment recommendations include enalapril (dogs, 0.5 mg/kg PO q12h) or amlodipine (cats, 0.625-1.25 mg per cat PO daily).
- Oxygen support is recommended in moderate to severe cases, especially if hypoventilation is present.
- Nursing care for recumbent patients is critical and includes frequent turning and thick bedding to prevent pressure

sores, urinary catheterization if indicated, and physical rehabilitation (at a minimum, passive range of motion and massage).

Chronic Medical Treatment

- Underlying predisposing conditions should be treated as indicated to reduce the risk for future infarction.
- Antithrombotics may be considered if a thromboembolic disorder is proven, but their use is controversial and not proven to be beneficial.
 - Options include clopidogrel (dogs, 1 mg/kg PO q24h; cats, 18.75 mg per cat PO q24h) or aspirin (dogs, 0.5-1.0 mg/kg/q24h; cats, 40 mg [1/2 baby aspirin tab] PO q48-72h

Nutritional Aspects

- There are no specific nutritional recommendations for infarction, but diets higher in essential fatty acids and omega-3 may be helpful.12
- Diet recommendations should also be based on predisposing conditions, such as a low-protein diet in patients with kidney disease.

Activity

- There are no activity restrictions for this condition.
- Physical rehabilitation is highly recommended to improve recovery and shorten duration of signs.

Client Education

Clients should be taught how to provide nursing care for recumbent animals, as well as how to treat underlying predisposing conditions.

Follow-up

Patient Monitoring

Patients should be monitored for signs of progression that might be consistent with a diagnosis other than stroke.

- If signs are progressive, further examination is required as that would suggest the patient did not have a stroke.
- Clients should be instructed to observe for signs of recumbencyassociated aspiration pneumonia (eg, coughing, tachypnea, dyspnea).

Complications

- The most common complication is recumbency-associated aspiration pneumonia.
- Other complications may be observed depending on concurrent predisposing conditions.

In General

Relative Cost

- Diagnostic workup and acute treatment: \$\$\$\$-\$\$\$\$
- Chronic treatment and follow-up: \$\$-\$\$\$

Cost Key

\$ = up to \$100

\$\$ = \$101-\$250

\$\$\$ = \$251-\$500

\$\$\$\$ = \$501-\$1000

\$\$\$\$ = more than \$1000

Prognosis

- In general, the prognosis for recovery is good to excellent for patients with focal infarctions that have limited initial clinical abnormalities, if given enough time and supportive care.
- Some patients have residual clinical signs, but quality of life is acceptable for most patients.
- The prognosis for global brain ischemia is guarded to fair.
 cb

References

- 1. Platt SR, Garosi L. Canine cerebrovascular disease-Do dogs have strokes? JAAHA. 2003;39(4):337-342.
- 2. Garosi LS. Cerebrovascular disease in dogs and cats. Vet Clin North Am Small Anim Pract. 2010;40(1):65-79.
- Hillock SM, Dewey CW, Stefanacci JD, et al. Vascular encephalopathies in dogs: Diagnosis, treatment and prognosis. Compend Contin Educ Vet. 2006;28:208-217.
- 4. Lowrie M, de Risio L, Dennis R, Llabrés-Díaz F, Garosi L. Concurrent medical conditions and long-term outcome in dogs with nontraumatic intracranial hemorrhage. Vet Radiol Ultrasound. 2012;53(4):381-388.
- 5. McConnell JF, Garosi L, Platt SR. Magnetic resonance imaging findings of presumed cerebellar cerebrovascular accident in twelve dogs. Vet Radiol Ultrasound. 2005;46(1):1-10.
- Garosi LS, McConnell JF. Ischaemic stroke in dogs and humans: A comparative review. J Sm Anim Pract. 2005;46(11):521-529.
- Garosi L, McConnell JF, Platt SR, et al. Clinical and topographic magnetic resonance characteristics of suspected brain infarction in 40 dogs. JVIM. 2006;20(2):311-21.
- 8. Liu SK, Tilley LP, Tappe JP, Fox PR. Clinical and pathologic findings in dogs with atherosclerosis: 21 cases (1970-1983). JAVMA. 1986;189(2):
- Timm K, Flegel T, Oechtering G. Sequential magnetic resonance imaging changes after suspected global brain ischaemia in a dog. J Small Anim Pract. 2008;49:408-412.
- 10. Panarello GL, Dewey CW, Barone G, Stefanacci JD. Magnetic resonance imaging of two suspected cases of global brain ischemia. JVECC. 2004;14(4):269-277.
- 11. Garosi LS, McConnell JE, Platt SR, et al. Results of diagnostic investigations and long-term outcome of 33 dogs with brain infarction (2000-2004). JVIM. 2005;19(5):725-731.
- 12. Ozen OA, Cosar M, Sahin O, et al. The protective effect of fish n-3 fatty acids on cerebral ischemia in rat prefrontal cortex. Neurol Sci. 2008;29(3):147-152.

Suggested Reading

- Altay UM, Skerritt GC, Hilbe M, Ehrensperger F, Steffen F. Feline cerebrovascular disease: clinical and histopathologic findings in 16 cats. JAAHA. 2011;47(2):89-97.
- Major AC, Caine A, Rodriguez SB, Cherubini GB. Imaging diagnosis: Magnetic resonance imaging findings in a dog with sequential brain infarction. Vet Radiol Ultrasound. 2012;53(5): 576-580.
- Fulkerson CV, Young BD, Jackson ND, Porter B, Levine JM. MRI characteristics of cerebral microbleeds in four dogs. Vet Radiol Ultrasound. 2012;53(4):389-393.