Giardiasis—Risk Factors & Prevalence

Data from a national electronic database was evaluated to estimate the prevalence and identify risk factors for *Giardia* spp infection in dogs in the United States, including 2.5 million owned dogs in 43 states from January 2003–December 2009. During routine visits, fecal flotation with zinc sulfate without centrifugation was performed to detect *Giardia* spp cysts in patients with and without signs. Cysts were found in 0.44% of dogs; this rate is similar to that in some recent studies, but lower than in those utilizing ELISA methods.

There was a steady decrease in annual prevalence and slight seasonal increase during the winter and summer. Improvements in hygiene and parasite control may have contributed, but declining annual prevalence should be interpreted with caution at this time. Prevalence was highest in the mountain regions (ie, Colorado), followed by New England, especially Maine. *Giardia* spp prevalence was greatest for dogs under 6 months of age (0.63%). Variations by sex and neuter status, with sexually intact females demonstrating greatest prevalence, although statistically significant, may not be clinically discernible. Working breeds showed highest prevalence, most likely reflecting their activities rather than biological factors. However, the low prevalence in crossbreeds compared with pure breeds should be noted.

Commentary

As expected, this study showed that puppies can be more commonly infected by *Giardia* spp than can adult dogs. Regional variation was also seen; however, sample sizes were not equal. Actual infection rates are likely to be higher than those reported in this study, because passive flotation on small fecal samples is not a sensitive technique compared with centrifugation on larger samples or antigen-detection tests (eg, ELISA, IFA, PCR). Presence or absence of signs (eg, diarrhea) was not studied as a risk factor and is worthy of further study. It would also be helpful to study how puppies were acquired (eg, breeder, shelter, pet store). Practitioners can use these and other data to help determine the risk for giardiasis and guide diagnostic testing.—Craig Datz, DVM, MS, DABVP (Canine & Feline), DACVN

Source

Time to Withdraw the Antipruritic?

Many antiinflammatory and antipruritic medications for canine atopic dermatitis can interfere with allergy testing. This study critically evaluated the optimum withdrawal time (OWT) for these drugs; OWT was defined as the time associated with no drug interference on test results. The authors proposed the following withdrawal times before intradermal skin testing: antihistamines, 7 days; oral glucocorticoids, 14 days; topical/otic glucocorticoids, 14 days; cyclosporine, 0 days. For serum-allergy testing, there was no evidence for withdrawal of cyclosporine or prednisone/prednisolone, and recommendations on withdrawal times for topical steroids or antihistamines could not be made as a result of limited studies.

Commentary

Diagnosis and management of pruritic pets is time consuming, expensive, and emotional for owners. This is worsened by the possibility that owners may need to watch their pet suffer from pruritus pending allergy testing. This evidence-based study provided guidelines for drug withdrawals of antiinflammatory drugs. Most noteworthy was that OWTs varied from 0 to 14 days for intradermal skin testing. When I started practice, the rule of thumb was 1 week for every month of steroids with a 6 week minimum. Clients always asked what they could do in the meantime; this was the best time to ensure flea control was used, that bacterial overgrowth was not present, and that good coat hygiene was maintained. Even bathing with water alone can bring some relief. It is important to note that this study focused on dogs and, hopefully, a follow-up will be provided for cats.—Karen A. Moriello, DVM, DACVD

Source