Canine Diabetic Ketoacidosis

Alice Huang, VMD, & J. Catharine Scott-Moncrieff, Vet MB, MS, MA, Diplomate ACVIM & ECVIM
Purdue University

Physical Examination
- Polyuria
- Polydipsia
- Polyphagia
Patient may have only 1 or more of these signs.

Laboratory Results
- Blood glucose (BG): Hyperglycemia (> 200 mg/dL)
- Blood gas (venous or arterial): Metabolic acidosis
- Urine dipstick: Glucosuria; ketonuria or ketonemia
 Serum ketones can be measured if urine is unavailable.

Diabetic Ketoacidosis

1. IV Isotonic Crystalloid Therapy
 - Shock fluid therapy is warranted if cardiovascular instability is present: Full shock dose of fluids is 90 mL/kg; start with ¼ to ⅓ dose and reassess until stable
 - Correct dehydration, provide maintenance needs, and replace ongoing losses over 6 to 24 hours:
 - % dehydration × body weight (kg) × 1000
 - 20 mL/kg/day (insensible losses)
 - 20 to 40 mL/kg/day (maintenance sensible losses)
 - Account for vomiting, diarrhea, & polyuria (ongoing sensible losses)

2. Electrolyte Supplementation (see Table 1, page 70)
 - Monitor serum potassium Q 4–6 H until within reference interval and stable; then Q 12–24 H
 - Monitor serum phosphorus Q 4–6 H until > 1.5; then Q 6–24 H
 - When supplementing potassium and phosphorus concurrently, take into account the amount of potassium contained in the potassium phosphate
 - Consider magnesium supplementation in instances of refractory hypokalemia

3. Regular Insulin
 - Continuous rate infusion (CRI) protocol:¹
 - Add 2.2 U/kg of regular insulin to 250 mL of 0.9% saline
 - Allow 50 mL of insulin solution to run through administration set because insulin adheres to plastic
 - Administer solution as shown in Table 2 (page 70)
 - Intermittent low-dose IM protocol:
 - Administer 0.2 U/kg regular insulin IM initially; 1 hour later begin IM injections of 0.1 U/kg every hour
 - If BG < 250 mg/dL make 5% dextrose solution with hydration fluids and change dosing regimen to 0.1 to 0.4 U/kg SC insulin Q 4–6 H
 - For either protocol:
 - Monitor BG Q 1–2 H
 - Goal for either protocol is to maintain BG between 200 and 300 mg/dL
 - Do not decrease BG faster than 70 to 100 mg/dL/H

BG = blood glucose; CRI = constant rate infusion; NPH = neutral protamine Hagedorn

Diagnostic Tree / NAVC Clinician’s Brief / April 2011

This algorithm can be downloaded and printed for use in your clinic at cliniciansbrief.com.

Monitoring
- Physical examination: Respiratory rate/effort, heart rate, pulse quality
- Hydration: Central venous pressure, weight, skin turgor, mucous membrane quality
- Electrolytes: Potassium, phosphorus, +/- magnesium
- Ketones: Serum, urine
- Blood glucose
- Blood gas and acid/base status
- Appetite/emesis
- As needed: Packed cell volume/total solids, serum biochemical profile, blood pressure

Hyperadrenocorticism
(see Hyperadrenocorticism: Why Wait to Test, page 70)

Ketones present?
- Yes
 - Continue IV fluids and electrolyte supplementation
 - Continue regular insulin administration, either CRI or IM (can administer via SC route if patient is hydrated)
- No (or trace)
 - Switch to SC Long-Acting Insulin
 - Neutral protamine Hagedorn (NPH) insulin (0.25–0.5 U/kg SC Q 12 H initially); consider starting at higher dose if patient previously diagnosed with diabetes mellitus and known to require higher doses of insulin
 - Lente (not currently commercially available)

Eating consistently?
- Yes
 - Switch to SC Long-Acting Insulin
 - Neutral protamine Hagedorn (NPH) insulin (0.25–0.5 U/kg SC Q 12 H initially); consider starting at higher dose if patient previously diagnosed with diabetes mellitus and known to require higher doses of insulin
 - Lente (not currently commercially available)
- No
 - Continue IV fluids and electrolyte supplementation
 - Continue regular insulin administration, either CRI or IM (can administer via SC route if patient is hydrated)

Hydrated?
- Yes
 - Continue IV fluids and electrolyte supplementation
 - Continue regular insulin administration, either CRI or IM (can administer via SC route if patient is hydrated)
- No
 - Switch to SC Long-Acting Insulin
 - Neutral protamine Hagedorn (NPH) insulin (0.25–0.5 U/kg SC Q 12 H initially); consider starting at higher dose if patient previously diagnosed with diabetes mellitus and known to require higher doses of insulin
 - Lente (not currently commercially available)

Underlying cause of insulin resistance identified?
- Yes
 - Hyperadrenocorticism
 - Neutral protamine Hagedorn (NPH) insulin (0.25–0.5 U/kg SC Q 12 H initially); consider starting at higher dose if patient previously diagnosed with diabetes mellitus and known to require higher doses of insulin
 - Lente (not currently commercially available)
- No
 - Continue IV fluids and electrolyte supplementation
 - Continue regular insulin administration, either CRI or IM (can administer via SC route if patient is hydrated)

Further Investigation
- It is essential to identify the underlying cause of the increase in diabetogenic hormones (catecholamines, glucagon, glucocorticoids, growth hormone, and estrogen) that lead to the ketogenic crisis:
 - Physical examination
 - Complete blood count
 - Serum biochemical profile
 - Urine culture
 - Canine pancreatic lipase immunoreactivity (cPLI)
 - Abdominal radiographs
 - Abdominal ultrasound
 - Thoracic radiographs
 - Pancreatitis
 - Urinary tract infection
 - Renal failure
 - Cholangiohepatitis
 - Pyometra
 - Skin disease
 - Heart disease
 - Neoplasia

Switch to SC Long-Acting Insulin
- Neutral protamine Hagedorn (NPH) insulin (0.25–0.5 U/kg SC Q 12 H initially); consider starting at higher dose if patient previously diagnosed with diabetes mellitus and known to require higher doses of insulin
- Neutral protamine Hagedorn (NPH) insulin (0.25–0.5 U/kg SC Q 12 H initially); consider starting at higher dose if patient previously diagnosed with diabetes mellitus and known to require higher doses of insulin

Treat Any Concurrent Conditions
- Pancreatitis
- Urinary tract infection
- Renal failure
- Cholangiohepatitis
- Pyometra
- Skin disease
- Heart disease
- Neoplasia
Table 1. Electrolyte Supplementation

<table>
<thead>
<tr>
<th>Serum Potassium Concentration (mEq/L)</th>
<th>Potassium Chloride Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 3.5 (maintenance)</td>
<td>0.05–0.1 mEq/kg/H</td>
</tr>
<tr>
<td>3–3.5</td>
<td>0.1–0.2 mEq/kg/H</td>
</tr>
<tr>
<td>2.5–3</td>
<td>0.2–0.3 mEq/kg/H</td>
</tr>
<tr>
<td>2–2.5</td>
<td>0.3–0.4 mEq/kg/H</td>
</tr>
<tr>
<td>< 2</td>
<td>0.4–0.5 mEq/kg/H</td>
</tr>
<tr>
<td>Serum Phosphorus Concentration (mg/dL) Potassium Phosphorus Dose</td>
<td></td>
</tr>
<tr>
<td>2–2.5</td>
<td>0.03 mmol/kg/H</td>
</tr>
<tr>
<td>1.5–2</td>
<td>0.06 mmol/kg/H</td>
</tr>
<tr>
<td>1–1.5</td>
<td>0.09 mmol/kg/H</td>
</tr>
<tr>
<td>< 1</td>
<td>0.12 mmol/kg/H</td>
</tr>
</tbody>
</table>

Table 2. CRI Infusion of Insulin Solution

<table>
<thead>
<tr>
<th>BG Concentration (mg/dL)</th>
<th>IV Hydration Fluids</th>
<th>Rate of Insulin Solution (mL/H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 250</td>
<td>0.9% saline</td>
<td>10</td>
</tr>
<tr>
<td>200–250</td>
<td>0.9% saline + 2.5% dextrose</td>
<td>7</td>
</tr>
<tr>
<td>150–200</td>
<td>0.9% saline + 2.5% dextrose</td>
<td>5</td>
</tr>
<tr>
<td>100–150</td>
<td>0.9% saline + 5% dextrose</td>
<td>5</td>
</tr>
<tr>
<td>< 100</td>
<td>0.9% saline + 5% dextrose</td>
<td>Discontinue</td>
</tr>
</tbody>
</table>

Hyperadrenocorticism: Why Wait to Test?

Although hyperadrenocorticism is one of the most frequent causes of insulin resistance, it is not appropriate to test for it during a diabetic ketoacidosis crisis because false positives would be expected. Diagnostic testing for hyperadrenocorticism should not be performed until the patient has been systemically healthy for at least 2 weeks. Appropriate regulation of diabetes mellitus may be difficult to achieve prior to diagnosis of concurrent hyperadrenocorticism.

See Aids & Resources, back page, for references & suggested reading.

BG = blood glucose