Canine Hip Dysplasia Part 1

This first of 2 articles covers the genetic implications, signalment, pathophysiology, and diagnosis of canine hip dysplasia; part 2 will address surgical and medical protocols, follow-up, and prevention.

Definition
- Canine hip dysplasia (CHD) is a disease of the coxofemoral joint in which laxity of the joint leads to degeneration of articular cartilage and development of osteoarthritis (OA).

Genetic Implications
- The disease is polygenetic and progression of OA as well as severity of clinical signs depend on interaction between a dog's genetic susceptibility and exposure to environmental stressors.
- Studies examining the heritability of joint laxity suggest that excluding dogs with hip joint laxity has potential for greater reduction in the incidence of CHD than only excluding dogs with radiographic evidence of coxofemoral joint OA.
- Further reduction in the incidence of CHD may include evaluation of a dog’s breeding value in which hip characteristics and joint laxity of the dog, its relatives, and its offspring are considered.
- For approximately 5 years, this method of determining breeding value has not led to further reduction in the incidence of CHD in Germany.

- CHD will remain in the population of large and giant breeds for some time.

Incidence/Prevalence
- Incidence of CHD has increased in the past 50 years.
- Overall prevalence is 3.52%.
- Breeds with highest incidence in the Veterinary Medical Database (1964–2003):
 - Newfoundland, Saint Bernard, Old English sheepdog, rottweiler, German shepherd, Samoyed, golden retriever, Alaskan malamute, Labrador retriever

Signalment
- Breeds with longer body length-to-height ratios may have an increased incidence.
- Breeds with a high body-to-mass ratio or BMI (kg/m² surface area) may have an increased incidence.
- Neutered dogs have a 1.2 odds ratio for CHD over intact males and females.
- Dogs younger than 1 year of age may present for CHD due to joint instability with the following clinical findings:
 - Damaged round ligament, articular cartilage, and joint capsule
Pregnancy
- Increased birth weight
- Increased number of pups in the litter

Specific for Labrador Retrievers
- Obesity13,14
- High-fat diet
- Exercise involving running after balls and sticks15

Pathophysiology
- Two causes proposed:
 - The first involves primary joint laxity due to abnormal collagen type or fiber development in the joint capsule and ligament of the femoral head.
 - The second describes abnormal endochondral ossification of the acetabulum resulting in joint incongruency, joint effusion, and secondary subluxation and laxity.16
- During growth (3–8 months of age), synovitis, perifoveal cartilage damage, and joint effusion occur, resulting in OA at maturity.
- Many dogs can develop hip joint laxity and radiographic evidence of OA; however, they may not show any signs of pain or lameness.

Clinical Signs
- Dogs younger than 1 year of age:
 - Lameness, stiffness in hindlimbs, bunny-hopping gait
- Adult dogs:
 - OA-related lameness, difficulty climbing stairs and jumping4

OFA Certification
The Orthopedic Foundation for Animals (OFA) is a voluntary database of dogs with certification of certain genetic clearances for the purpose of conformation showing, athletic competition, and breeding. To meet OFA review and certification for radiographic evaluation, the following criteria must be met:
- Comprehensive examination performed on the dog at 2 years of age
- Microchip identification of the dog completed
- Preanesthetic blood work conducted before radiographic evaluation
- Preventive vaccinations and screening for heartworm disease up-to-date

Examination
- Crepitus and pain when hip is extended or abducted, hindlimb muscle atrophy
- Decreased range of motion in the joint, lameness in one or both hindlimbs

Pain Index
- Affected dogs may have acute episodes of joint pain resulting in non-weight-bearing lameness as well as chronic pain and lameness associated with OA.

DIAGNOSIS
- Immature dogs: suspect CHD in presence of pain on manipulation of hips.
- Ortolani test (may require sedation/anesthesia, Figure 1):
 - Positive Ortolani sign is any indication that the joint can be luxated or subluxated with pressure placed on the femur dorsally and reduction of the femoral head into the acetabulum when the limb is abducted. A positive Barlow sign is present when dorsal force is placed on the femur and the head luxates on abduction of the neck.
 - Negative Ortolani sign does not indicate lack of joint laxity; if hip extension is resisted by the dog, radiography is indicated.

PennHIP Fast Facts
- PennHIP is a multifaceted radiographic screening method for hip evaluation.
- The method can be performed on puppies as young as 16 weeks of age.
- The onset of hip OA related to CHD can be delayed by keeping dogs at risk for hip disease at a lean weight throughout their lifetime.
- The PennHIP distraction index (DI) is a valuable indicator of future hip OA.
- The DI does not change significantly over time.

Source: What is PennHIP? University of Pennsylvania School of Veterinary Medicine.
Mature dogs: suspect CHD in presence of pain and crepitus in hips; confirm with radiographic signs of OA.

Definitive Diagnosis

Radiography
- Used for definitive diagnosis in adult dogs with hip OA and to screen puppies for hip joint laxity
- Hip-extended ventrodorsal view to assess joint congruency (Figure 2); investigate Orthopedic Foundation for Animals (OFA) certification
- Distraction ventrodorsal or dorsoventral view to assess joint laxity (Figure 3):
 - PennHIP (requires certification of the veterinarian) or dorsolateral subluxation score
 - PennHIP DI can correlate with the development of CHD later in life in dogs as young as 16 weeks of age but requires certification and a specialized apparatus to perform.
- Low incidence of false-negative diagnosis for CHD, whereas OFA certification may have higher incidence, in which case more dogs will be bred with CHD and pass on the disease to their offspring.
- Norberg angle ventrodorsal radiography is another method used to detect laxity. (Note: This angle is formed by connecting a point at the center of the femoral head [ball of the hip] to the upper acetabular rim [hip socket].)
- No radiographic technique will completely eliminate false-positive and false-negative findings in obtaining a diagnosis of CHD before onset of OA.

See Aids & Resources, back page, for references & suggested reading.

CHD = canine hip dysplasia, DI = distraction index, OA = osteoarthritis, OFA = Orthopedic Foundation for Animals